B.Sc. Semester I (Honours) Examination, 2019 ELECTRONICS

Course ID : 11712
Course Code : SHELC-102C-2(T)
Course Title : Mathematics Foundation for Electronics
Time: 1 Hour 15 Minutes
Full Marks:
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any three of the following:
(a) What do you mean by differential equation?
(b) Give one example of partial differential equation of 2 nd order.
(c) What is 'order' and 'degree' of a differential equation?
(d) What is a 'singular' point?
(e) What is recurrence relation?
(f) Give the definition of Gamma function (Γ).
2. Answer any three of the following:
(a) What is the 'ordinary' point?2
(b) What is the origin of 'indicial' equation?
(c) What is the relation between Beta and Gamma functions?

Show that: $\Gamma(n+1)=n \Gamma(n)=n$!
(d) $\beta(m+1, n)=\frac{m}{m+n} \cdot \beta(m, n)-$ Prove this from the definition.
(e) What is an analytic function?
(f) Give one example of row matrix and column matrix.
3. Answer any two of the following:
(a) Solve one dimensional heat flow equation:
$\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ by separation of variables method.
(b) Show that the polar forms of Cauchy-Riemann (C-R) equation are

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=-\frac{\partial u}{\partial \theta} .
$$

(c) Construct the recurrence rotation by solving given differential equation, by power series method:

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0
$$

(d) Find the eigenvalues and eigenvectors of the matrix $\left(\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right)$.
$O r$,
Obtain the indicial equation for the given Bessel's equation of order ' n '.
$x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0$
4. Answer any one of the following questions:
(a) Find the value of $\Gamma\left(\frac{1}{2}\right)$ and hence plot the graph of Gamma function for $n=-\infty$ to $+\infty$ (i.e for whole range.)
(b) What is Argand's diagram? Draw the Argand diagram for a complex number. State Residue Theorem. What are the various methods of calculation of Residue?

$$
(1+2)+(1+2)=6
$$

(c) Find the diagonal form of matrix

$$
A=\left(\begin{array}{ccc}
-1 & 2 & -2 \\
1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right)
$$

$$
O r
$$

Evaluate the given integral using residue theorem
$I=\int_{c} \frac{4-3 z}{z(z-1)(z-2)} d z$
where C is a circle with $|Z|=3 / 2$.

