	ELECTRO	NICS
Course ID : 11712		Course Code : SHELC-102C-2(T)
	Course Title : Mathematics For	undation for Electronics
Time: 1 Hour 15 Minutes		Full Marks: 25
	The figures in the margin i	ndicate full marks.
	Candidates are required to give their as far as pract	
1.	Answer any three of the following:	1×3=3
	(a) What do you mean by differential equation?	
	(b) Give one example of partial differential equat	ion of 2nd order.
	(c) What is 'order' and 'degree' of a differential	equation?
	(d) What is a 'singular' point?	
	(e) What is recurrence relation?	
	(f) Give the definition of Gamma function (Γ).	
2.	Answer any three of the following:	2×3=6
	(a) What is the 'ordinary' point?	2
	(b) What is the origin of 'indicial' equation?	2
	(c) What is the relation between Beta and Gamm	a functions?
	Show that: $\Gamma(n + 1) = n\Gamma(n) = n!$	1+1=2
	(d) $\beta(m+1,n) = \frac{m}{m+n} \cdot \beta(m,n)$ — Prove this for	rom the definition. 2
	(e) What is an analytic function?	2
	(f) Give one example of row matrix and column	matrix. 1+1=2
3.	Answer any two of the following:	5×2=10
	(a) Solve one dimensional heat flow equation:	
	$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ by separation of variables method	1.
	(b) Show that the polar forms of Cauchy-Rieman	n (C-R) equation are

B.Sc. Semester I (Honours) Examination, 2019

10386

Please Turn Over

SH-I/Electronics-102C-2(T)/19

С

SH-I/Electronics-102C-2(T)/19

(c) Construct the recurrence rotation by solving given differential equation, by power series method:

$$(1 - x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0$$

- (d) Find the eigenvalues and eigenvectors of the matrix $\begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$.
 - Or,

(2)

Obtain the indicial equation for the given Bessel's equation of order 'n'.

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0$$

- 4. Answer *any one* of the following questions:
 - (a) Find the value of $\Gamma(\frac{1}{2})$ and hence plot the graph of Gamma function for $n = -\infty$ to $+\infty$ (i.e for whole range.) 3+3=6
 - (b) What is Argand's diagram? Draw the Argand diagram for a complex number. State Residue Theorem. What are the various methods of calculation of Residue? (1+2)+(1+2)=6
 - (c) Find the diagonal form of matrix

$$A = \begin{pmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{pmatrix}$$
 $Or,$

Evaluate the given integral using residue theorem

$$I = \int_c \frac{4-3z}{z(z-1)(z-2)} dz$$

where *C* is a circle with $|Z| = \frac{3}{2}$.

6

6×1=6